If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3s2 + 14s + 12 = 0 Reorder the terms: 12 + 14s + 3s2 = 0 Solving 12 + 14s + 3s2 = 0 Solving for variable 's'. Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 4 + 4.666666667s + s2 = 0 Move the constant term to the right: Add '-4' to each side of the equation. 4 + 4.666666667s + -4 + s2 = 0 + -4 Reorder the terms: 4 + -4 + 4.666666667s + s2 = 0 + -4 Combine like terms: 4 + -4 = 0 0 + 4.666666667s + s2 = 0 + -4 4.666666667s + s2 = 0 + -4 Combine like terms: 0 + -4 = -4 4.666666667s + s2 = -4 The s term is 4.666666667s. Take half its coefficient (2.333333334). Square it (5.444444448) and add it to both sides. Add '5.444444448' to each side of the equation. 4.666666667s + 5.444444448 + s2 = -4 + 5.444444448 Reorder the terms: 5.444444448 + 4.666666667s + s2 = -4 + 5.444444448 Combine like terms: -4 + 5.444444448 = 1.444444448 5.444444448 + 4.666666667s + s2 = 1.444444448 Factor a perfect square on the left side: (s + 2.333333334)(s + 2.333333334) = 1.444444448 Calculate the square root of the right side: 1.201850427 Break this problem into two subproblems by setting (s + 2.333333334) equal to 1.201850427 and -1.201850427.Subproblem 1
s + 2.333333334 = 1.201850427 Simplifying s + 2.333333334 = 1.201850427 Reorder the terms: 2.333333334 + s = 1.201850427 Solving 2.333333334 + s = 1.201850427 Solving for variable 's'. Move all terms containing s to the left, all other terms to the right. Add '-2.333333334' to each side of the equation. 2.333333334 + -2.333333334 + s = 1.201850427 + -2.333333334 Combine like terms: 2.333333334 + -2.333333334 = 0.000000000 0.000000000 + s = 1.201850427 + -2.333333334 s = 1.201850427 + -2.333333334 Combine like terms: 1.201850427 + -2.333333334 = -1.131482907 s = -1.131482907 Simplifying s = -1.131482907Subproblem 2
s + 2.333333334 = -1.201850427 Simplifying s + 2.333333334 = -1.201850427 Reorder the terms: 2.333333334 + s = -1.201850427 Solving 2.333333334 + s = -1.201850427 Solving for variable 's'. Move all terms containing s to the left, all other terms to the right. Add '-2.333333334' to each side of the equation. 2.333333334 + -2.333333334 + s = -1.201850427 + -2.333333334 Combine like terms: 2.333333334 + -2.333333334 = 0.000000000 0.000000000 + s = -1.201850427 + -2.333333334 s = -1.201850427 + -2.333333334 Combine like terms: -1.201850427 + -2.333333334 = -3.535183761 s = -3.535183761 Simplifying s = -3.535183761Solution
The solution to the problem is based on the solutions from the subproblems. s = {-1.131482907, -3.535183761}
| j-26=47 | | 7(-9)=3y+5 | | 5c^3-2c^2=0 | | 47j=26 | | -16t^2-2t+333=0 | | 7a^2-49a-8=0 | | 3x+0.1x=2x | | 5(5-3x)-2=7(4-x)-9x-5 | | (x-3)(x+3)-(2x+9)2= | | 9x^2+15x-8=0 | | 2x+0.2x=x | | x^2+15-8=0 | | 4-(2x+5)=2(1X+6) | | X/2-18=12 | | a/2=-3/2 | | 6+n-10=-22 | | 2mx*3p= | | 4+n+6=27 | | 0=-16t^2+324t+42 | | (-4K-1)/3=-7 | | x=4*2x | | (6/3)-(3×0)= | | 8/4x-5/6=-13/12x | | 6x-2=-6X+6 | | 5y^3-6y-2= | | 126=2x(x+2) | | 5y^3-6y-2=0 | | 0.4435= | | (R-8)/9=1 | | x+66=7x | | 3d+11=5-11 | | 6x+6=12-7x |